近日,中国科学院深圳先进技术研究院医工所微创中心聂泽东研究员团队在基于生理信息的无创血糖监测技术方面取得新进展,相关研究成果以“Noninvasive blood glucose monitoring using spatiotemporal ECG and PPG feature fusion and weight-based Choquet integral multimodel approach”为题发表在人工智能领域国际顶级期刊IEEE Transactions on Neural Networks and Learning Systems(中科院1区,IF=14.25)。这是继团队在IEEE Journal of Biomedical and Health Informatics、Knowledge-Based Systems等发文研究基于生理信息的血糖监测/糖尿病管理的可行性后,在基于多模融合的无创血糖监测方面的又一重要进展。这一研究揭示了基于穿戴无创设备解析血糖变化的适用性,有望应用于糖尿病慢病管理、高风险人群评估等。
随着人们生活水平的提高和我国人口老龄化进程的加快,糖尿病患病率逐年攀升。主动血糖监测是有效减少糖尿病和延缓并发症的重要手段之一。目前,血糖监测主要通过指尖采血或者基于电化学检测技术的植入式血糖监测设备(CGMS),然而,这些方法存在疼痛、使用寿命短、成本高等缺点,限制了患者的依从性。因此,研发一种非侵入式、舒适便捷的无创监测技术对促进血糖监测具有重要的意义和临床价值。
相关研究表明,血糖浓度的变化会刺激人体自主神经系统,引起心电(ECG)、光电容积脉搏波(PPG)等生理信息的改变,同时考虑到ECG、PPG可通过智能可穿戴设备获取,具有使用快捷、成本低等优势,如图所示,研究人员提出了一种基于ECG及PPG多模态融合的无创血糖监测技术,通过采用数值计算方法及深度学习算法获取上述生理信息的时空特征信息,并采用基于可变权重的Choquet积分算法,实现不同模态的决策融合。通过获取21名志愿者共103天数据,在10折交叉验证中,所提出的多模融合算法在血糖监测中的MARD值达到13.42%,一致性误差网格的A+B区>99%。上述研究成果为基于穿戴健康设备和家庭用健康设备实现无创血糖监测提供了重要的理论基础与技术支撑,具有广阔的应用前景。
李景振助理研究员为论文第一作者,聂泽东研究员为论文通讯作者。该研究得到了科技部重点研发计划、国家自然科学基金、中科院STS-黄埔专项、中科院健康信息重点实验室的支持。
图(a)ECG/PPG的时空特征提取流程图;(b)实验测量场景;(c)实验结果评估
附件下载: